I have a data frame (all_data) in which I have a list of sites (1... to n) and their scores e.g.
site score
1 10
1 11
1 12
4 10
4 11
4 11
8 9
8 8
8 7
I want create a column that numbers each level of site in numerical order, like a counter. In the example, the sites (1, 4, and 8) would be have a corresponding counter from 1 to 3 in the 'number' column:
site score number
1 10 1
1 11 1
1 12 1
4 10 2
4 11 2
4 11 2
8 9 3
8 8 3
8 7 3
I am sure this must be easily solved, but I have not found a way yet.
Solution 1
Try Data$number <- as.numeric(as.factor(Data$site))
On a sidenote : the difference between the solution of me and @Chase on one hand, and the one of @DWin on the other, is the ordering of the numbers. Both as.factor and factor will automatically sort the levels, whereas that doesn't happen in the solution of @DWin :
Dat <- data.frame(site = rep(c(1,8,4), each = 3), score = runif(9))
Dat$number <- as.numeric(factor(Dat$site))
Dat$sitenum <- match(Dat$site, unique(Dat$site) )
Gives
> Dat
site score number sitenum
1 1 0.7377561 1 1
2 1 0.3131139 1 1
3 1 0.7862290 1 1
4 8 0.4480387 3 2
5 8 0.3873210 3 2
6 8 0.8778102 3 2
7 4 0.6916340 2 3
8 4 0.3033787 2 3
9 4 0.6552808 2 3
Solution 2
Two other options:
1) Using the .GRP function from the data.table package:
library(data.table)
setDT(dat)[, num := .GRP, by = site]
with the example dataset from below this results in:
> dat
site score num
1: 1 0.14945795 1
2: 1 0.60035697 1
3: 1 0.94643075 1
4: 8 0.68835336 2
5: 8 0.50553372 2
6: 8 0.37293624 2
7: 4 0.33580504 3
8: 4 0.04825135 3
9: 4 0.61894754 3
10: 8 0.96144729 2
11: 8 0.65496051 2
12: 8 0.51029199 2
2) Using the group_indices function from dplyr:
dat$num <- group_indices(dat, site)
or when you want to work around non-standard evaluation:
library(dplyr)
dat %>%
mutate(num = group_indices_(dat, .dots = c('site')))
which results in:
site score num
1 1 0.42480366 1
2 1 0.98736177 1
3 1 0.35766187 1
4 8 0.06243182 3
5 8 0.55617002 3
6 8 0.20304632 3
7 4 0.90855921 2
8 4 0.25215078 2
9 4 0.44981251 2
10 8 0.60288270 3
11 8 0.46946587 3
12 8 0.44941782 3
As can be seen, dplyr gives a different order of the group numbers.
If you want another number every time the group changes, there are several other options:
1) with base R:
# option 1:
dat$num <- cumsum(c(TRUE, head(dat$site, -1) != tail(dat$site, -1)))
# option 2:
x <- rle(dat$site)$lengths
dat$num <- rep(seq_along(x), times=x)
2) with the data.table package:
library(data.table)
setDT(dat)[, num := rleid(site)]
which all result in:
> dat
site score num
1 1 0.80817855 1
2 1 0.07881334 1
3 1 0.60092828 1
4 8 0.71477988 2
5 8 0.51384565 2
6 8 0.72011650 2
7 4 0.74994627 3
8 4 0.09564052 3
9 4 0.39782587 3
10 8 0.29446540 4
11 8 0.61725367 4
12 8 0.97427413 4
Used data:
dat <- data.frame(site = rep(c(1,8,4,8), each = 3), score = runif(12))
Solution 3
In the new dplyr 1.0.0 we can use cur_group_id() which gives a unique numeric identifier to a group.
library(dplyr)
df %>% group_by(site) %>% mutate(number = cur_group_id())
# site score number
# <int> <int> <int>
#1 1 10 1
#2 1 11 1
#3 1 12 1
#4 4 10 2
#5 4 11 2
#6 4 11 2
#7 8 9 3
#8 8 8 3
#9 8 7 3
data
df <- structure(list(site = c(1L, 1L, 1L, 4L, 4L, 4L, 8L, 8L, 8L),
score = c(10L, 11L, 12L, 10L, 11L, 11L, 9L, 8L, 7L)),
class = "data.frame", row.names = c(NA, -9L))
Solution 4
This should be fairly efficient and understandable:
Dat$sitenum <- match(Dat$site, unique(Dat$site))
Solution 5
Using the data from @Jaap, a different dplyr possibility using dense_rank() could be:
dat %>%
mutate(ID = dense_rank(site))
site score ID
1 1 0.1884490 1
2 1 0.1087422 1
3 1 0.7438149 1
4 8 0.1150771 3
5 8 0.9978203 3
6 8 0.7781222 3
7 4 0.4081830 2
8 4 0.2782333 2
9 4 0.9566959 2
10 8 0.2545320 3
11 8 0.1201062 3
12 8 0.5449901 3
Or a rleid()-like dplyr approach, with the data arranged first:
dat %>%
arrange(site) %>%
mutate(ID = with(rle(site), rep(seq_along(lengths), lengths)))
site score ID
1 1 0.1884490 1
2 1 0.1087422 1
3 1 0.7438149 1
4 4 0.4081830 2
5 4 0.2782333 2
6 4 0.9566959 2
7 8 0.1150771 3
8 8 0.9978203 3
9 8 0.7781222 3
10 8 0.2545320 3
11 8 0.1201062 3
12 8 0.5449901 3
Or using duplicated() and cumsum():
df %>%
mutate(ID = cumsum(!duplicated(site)))
The same with base R:
df$ID <- with(rle(df$site), rep(seq_along(lengths), lengths))
Or:
df$ID <- cumsum(!duplicated(df$site))
Solution 6
You can turn site into a factor and then return the numeric or integer values of that factor:
dat <- data.frame(site = rep(c(1,4,8), each = 3), score = runif(9))
dat$number <- as.integer(factor(dat$site))
dat
site score number
1 1 0.5305773 1
2 1 0.9367732 1
3 1 0.1831554 1
4 4 0.4068128 2
5 4 0.3438962 2
6 4 0.8123883 2
7 8 0.9122846 3
8 8 0.2949260 3
9 8 0.6771526 3
Solution 7
Another solution using the data.table package.
Example with the more complete datset provided by Jaap:
setDT(dat)[, number := frank(site, ties.method = "dense")]
dat
site score number
1: 1 0.3107920 1
2: 1 0.3640102 1
3: 1 0.1715318 1
4: 8 0.7247535 3
5: 8 0.1263025 3
6: 8 0.4657868 3
7: 4 0.6915818 2
8: 4 0.3558270 2
9: 4 0.3376173 2
10: 8 0.7934963 3
11: 8 0.9641918 3
12: 8 0.9832120 3
Solution 8
Another way to do it. That I think is easy to get even when you know little about R:
library(dplyr)
df <- data.frame('site' = c(1, 1, 1, 4, 4, 4, 8, 8, 8))
df <- mutate(df, 'number' = cumsum(site != lag(site, default=-1)))
Solution 9
If you want to keep your existing columns and assign back to the same data frame...
my_df <- my_df %>%
select(everything()) %>%
group_by(geo) %>%
mutate(geo_id = cur_group_id())
And you can do multiple columns like so...
my_df <- my_df %>%
select(everything()) %>%
group_by(geo) %>%
mutate(geo_id = cur_group_id()) %>%
group_by(state) %>%
mutate(state_id = cur_group_id()) %>%
group_by(name) %>%
mutate(name_id = cur_group_id())
Solution 10
I too recently needed a solution to this. Didn't find this thread, started mine and was re-directed here (thank you). Good to see many solutions but to me (and I feel is good practice), a scalable solution is important. Hence, benchmarked several solutions below.
df <- data.table(country = rep(c('a', 'b', 'b', 'c', 'c', 'c'), 1e7)
)
a <-
microbenchmark(factor = {df[, group_id := as.integer(factor(country))]}
, unique_match = df[, group_id := match(country, unique(country))]
, rle = df[ , group_id := with(rle(country), rep(seq_along(lengths), lengths))]
, dup_cumsum = df[, group_id := cumsum(!duplicated(country))]
, frank = df[, group_id := frank(country, ties.method = "dense")]
, GRP = df[, group_id := .GRP, country]
, rleid = df[, group_id := rleid(country)]
, cumsum_head_tail = df[, group_id := cumsum(c(TRUE, head(country, -1) != tail(country, -1)))]
, times = 50
)
autoplot(a)
It would appear the podium is held by data.table.
Still, was great to learn of alternatives e.g. cumsum(!duplicated(country)). What a brainteaser!
Solution 11
If the numbers of the site column were unordered, we could use as_factor() in combination with fct_inorder() from the forcats package:
library(tibble)
library(dplyr)
library(forcats)
all_data_unordered <- tibble(site = c(1,1,1,8,8,8,4,4,4),
score = c(10,11,12,10,11,11,9,8,7))
all_data_unordered |>
mutate(number = as_factor(site) |> fct_inorder() |> as.integer())
#> # A tibble: 9 × 3
#> site score number
#> <dbl> <dbl> <int>
#> 1 1 10 1
#> 2 1 11 1
#> 3 1 12 1
#> 4 8 10 2
#> 5 8 11 2
#> 6 8 11 2
#> 7 4 9 3
#> 8 4 8 3
#> 9 4 7 3
Created on 2021-11-05 by the reprex package (v2.0.1)
