Pandas: how to merge two dataframes on a column by keeping the information of the first one?Pandas: how to merge two dataframes on a column by keeping the information of the first one? - Solution Checker - solutionschecker.com - Find the solution for any programming question. We as a solution checker will focus on finding the fastest possible solution for developers. Main topics like coding, learning.

I have two dataframes df1 and df2. df1 contains the information of the age of people, while df2 contains the information of the sex of people. Not all the people are in df1 nor in df2

df1
     Name   Age 
0     Tom    34
1     Sara   18
2     Eva    44
3     Jack   27
4     Laura  30

df2
     Name      Sex 
0     Tom       M
1     Paul      M
2     Eva       F
3     Jack      M
4     Michelle  F

I want to have the information of the sex of the people in df1 and setting NaN if I do not have this information in df2. I tried to do df1 = pd.merge(df1, df2, on = 'Name', how = 'outer') but I keep the information of some people in df2 that I don't want.

df1
     Name   Age     Sex
0     Tom    34      M
1     Sara   18     NaN
2     Eva    44      F
3     Jack   27      M
4     Laura  30     NaN

Solution 1

Sample:

df1 = pd.DataFrame({'Name': ['Tom', 'Sara', 'Eva', 'Jack', 'Laura'], 
                    'Age': [34, 18, 44, 27, 30]})

#print (df1)
df3 = df1.copy()

df2 = pd.DataFrame({'Name': ['Tom', 'Paul', 'Eva', 'Jack', 'Michelle'], 
                    'Sex': ['M', 'M', 'F', 'M', 'F']})
#print (df2)

Use map by Series created by set_index:

df1['Sex'] = df1['Name'].map(df2.set_index('Name')['Sex'])
print (df1)
    Name  Age  Sex
0    Tom   34    M
1   Sara   18  NaN
2    Eva   44    F
3   Jack   27    M
4  Laura   30  NaN

Alternative solution with merge with left join:

df = df3.merge(df2[['Name','Sex']], on='Name', how='left')
print (df)
    Name  Age  Sex
0    Tom   34    M
1   Sara   18  NaN
2    Eva   44    F
3   Jack   27    M
4  Laura   30  NaN

If need map by multiple columns (e.g. Year and Code) need merge with left join:

df1 = pd.DataFrame({'Name': ['Tom', 'Sara', 'Eva', 'Jack', 'Laura'], 
                    'Year':[2000,2003,2003,2004,2007],
                    'Code':[1,2,3,4,4],
                    'Age': [34, 18, 44, 27, 30]})

print (df1)
    Name  Year  Code  Age
0    Tom  2000     1   34
1   Sara  2003     2   18
2    Eva  2003     3   44
3   Jack  2004     4   27
4  Laura  2007     4   30

df2 = pd.DataFrame({'Name': ['Tom', 'Paul', 'Eva', 'Jack', 'Michelle'], 
                    'Sex': ['M', 'M', 'F', 'M', 'F'],
                    'Year':[2001,2003,2003,2004,2007],
                    'Code':[1,2,3,5,3],
                    'Val':[21,34,23,44,67]})
print (df2)
       Name Sex  Year  Code  Val
0       Tom   M  2001     1   21
1      Paul   M  2003     2   34
2       Eva   F  2003     3   23
3      Jack   M  2004     5   44
4  Michelle   F  2007     3   67
#merge by all columns
df = df1.merge(df2, on=['Year','Code'], how='left')
print (df)
  Name_x  Year  Code  Age Name_y  Sex   Val
0    Tom  2000     1   34    NaN  NaN   NaN
1   Sara  2003     2   18   Paul    M  34.0
2    Eva  2003     3   44    Eva    F  23.0
3   Jack  2004     4   27    NaN  NaN   NaN
4  Laura  2007     4   30    NaN  NaN   NaN

#specified columns - columns for join (Year, Code) need always + appended columns (Val)
df = df1.merge(df2[['Year','Code', 'Val']], on=['Year','Code'], how='left')
print (df)
    Name  Year  Code  Age   Val
0    Tom  2000     1   34   NaN
1   Sara  2003     2   18  34.0
2    Eva  2003     3   44  23.0
3   Jack  2004     4   27   NaN
4  Laura  2007     4   30   NaN

If get error with map it means duplicates by columns of join, here Name:

df1 = pd.DataFrame({'Name': ['Tom', 'Sara', 'Eva', 'Jack', 'Laura'], 
                    'Age': [34, 18, 44, 27, 30]})

print (df1)
    Name  Age
0    Tom   34
1   Sara   18
2    Eva   44
3   Jack   27
4  Laura   30

df3, df4 = df1.copy(), df1.copy()

df2 = pd.DataFrame({'Name': ['Tom', 'Tom', 'Eva', 'Jack', 'Michelle'], 
                    'Val': [1,2,3,4,5]})
print (df2)
       Name  Val
0       Tom    1 <-duplicated name Tom
1       Tom    2 <-duplicated name Tom
2       Eva    3
3      Jack    4
4  Michelle    5

s = df2.set_index('Name')['Val']
df1['New'] = df1['Name'].map(s)
print (df1)

InvalidIndexError: Reindexing only valid with uniquely valued Index objects

Solutions are removed duplicates by DataFrame.drop_duplicates, or use map by dict for last dupe match:

#default keep first value
s = df2.drop_duplicates('Name').set_index('Name')['Val']
print (s)
Name
Tom         1
Eva         3
Jack        4
Michelle    5
Name: Val, dtype: int64

df1['New'] = df1['Name'].map(s)
print (df1)
    Name  Age  New
0    Tom   34  1.0
1   Sara   18  NaN
2    Eva   44  3.0
3   Jack   27  4.0
4  Laura   30  NaN
#add parameter for keep last value 
s = df2.drop_duplicates('Name', keep='last').set_index('Name')['Val']
print (s)
Name
Tom         2
Eva         3
Jack        4
Michelle    5
Name: Val, dtype: int64

df3['New'] = df3['Name'].map(s)
print (df3)
    Name  Age  New
0    Tom   34  2.0
1   Sara   18  NaN
2    Eva   44  3.0
3   Jack   27  4.0
4  Laura   30  NaN
#map by dictionary
d = dict(zip(df2['Name'], df2['Val']))
print (d)
{'Tom': 2, 'Eva': 3, 'Jack': 4, 'Michelle': 5}

df4['New'] = df4['Name'].map(d)
print (df4)
    Name  Age  New
0    Tom   34  2.0
1   Sara   18  NaN
2    Eva   44  3.0
3   Jack   27  4.0
4  Laura   30  NaN

Solution 2

You can also use the join method:

df1.set_index("Name").join(df2.set_index("Name"), how="left")

edit: added set_index("Name")

Solution 3

Simple addition to @jezrael answer for creating dictionary from dataframe.

It may be helpful..

Python:

df1 = pd.DataFrame({'Name': ['Tom', 'Sara', 'Eva', 'Jack', 'Laura'],
                    'Age': [34, 18, 44, 27, 30]})


df2 = pd.DataFrame({'Name': ['Tom', 'Paul', 'Eva', 'Paul', 'Jack', 'Michelle', 'Tom'],
                    'Something': ['M', 'M', 'F', 'M', 'A', 'F', 'B']})


df1_dict = pd.Series(df1.Age.values, index=df1.Name).to_dict()

df2['Age'] = df2['Name'].map(df1_dict)

print(df2)

Output:

      Name Something   Age
0       Tom         M  34.0
1      Paul         M   NaN
2       Eva         F  44.0
3      Paul         M   NaN
4      Jack         A  27.0
5  Michelle         F   NaN
6       Tom         B  34.0

Solution 4

Reindexing hasn't been mentioned yet, but it's very fast and can auto-fill missing values if desired.


DataFrame.reindex

Use the common key (Name) as the index of the mapping dataframe (df2):

  • If df2's index is already Name, just reindex directly:

    df2['Sex'].reindex(df1['Name'])
    
  • Otherwise set_index beforehand:

    df2.set_index('Name')['Sex'].reindex(df1['Name'])
    

Note that when assigning into an existing dataframe, the reindexed index will be misaligned, so assign only the array values:

df1['Sex'] = df2.set_index('Name')['Sex'].reindex(df1['Name']).array

#     Name  Age  Sex
# 0    Tom   34    M
# 1   Sara   18  NaN
# 2    Eva   44    F
# 3   Jack   27    M
# 4  Laura   30  NaN

Also I've noticed a common assumption that reindexing is slow, but it's actually fast(est):


To fill missing values

reindex supports auto-filling missing values:

  • fill_value: static replacement
  • method: algorithmic replacement (ffill, bfill, or nearest) given monotonic index

For example, to fill empty Sex values with Prefer not to say (PNS):

df2.set_index('Name')['Sex'].reindex(df1['Name'], fill_value='PNS')

#     Name  Age  Sex
# 0    Tom   34    M
# 1   Sara   18  PNS
# 2    Eva   44    F
# 3   Jack   27    M
# 4  Laura   30  PNS

Reindexing with fill_value is faster than chaining fillna:


To handle duplicates

The mapping dataframe (df2) cannot have duplicate keys, so drop_duplicates if applicable:

df2.drop_duplicates('Name').set_index('Name')['Sex'].reindex(df1['Name'])

Timing data: